Boyer Moore

vs Rabin Karp

Patrick Collins




Problem that I'll be solving

& Searching desired text within a text file, and returning matches and time.

& | will do this by implementing the Boyer-Moore-Horspool and Rabin
Karp(without rolling hash) string searching algorithms.

& Once both algorithms can find desired text, | will compare them to find out
which is better for this problem.



Data Structures

& For storing matches in both algorithms | will be using a list. Inserting at the
back using push_back() as this will be constant time O(1).

& For Boyer Moore, the skipping will be done using an array as accessing the
contents will be constant time O(1).



@

Goals

Boyer Moore should be much
faster as text/input gets bigger

Rabin Karp should be affected
by length of pattern.

Expected Results

Box plots

Boyer Moore’s boxplots should
be relatively close together, as
not much variation between
input length.

Rabin Karp’s boxplots should
vary as input size gets bigger.

Time complexity

Boyer-Moore-Horspool: Best
case O(N/M), worst-case
of O(NM).

Rabin Karp: Best typical case
O(N), worst case is also O(N)



Smaller text file

]Uﬂld load jute book(string& str) {
// Read the whole file into str.
load file("jute-book.txt™, str);

1! [/ Extract only the main text of the book, removing the Project Gutenberg

// header/footer and indices.
str = str.substr({8x4d7, @x2558c - 6x4d7);



In milliseconds

Pattern=the (1000 iterations)

Boyer-Moore-Horspool Rabin Karp

Boyer Moore Rabin Karp

_ﬁ_

b
L=
1

o

W
o0

W
o

In milliseconds

W
N

W
(8

W
o

T T
Boyer Hoore Rabin Karp Algorithm
Algorithm Algorithm



In milliseconds

W
o

Pd
o
1

d
s
I

&%
Y
1

R
PJ
1

]
]
I

Pattern=Dundee (1000 iterations)

Boyer-Moore-Horspool Rabin Karp

Boyer Moore Rabin Karp

- - o

In milliseconds

B

T T
Boyer Moore Rabin Karp Algorithm
Algorithm Algorithm



In milliseconds

[
%]
1

=
[=]
I

o
I

=]
I

Y
1

fJ
1

Pattern=the (10000 iterations)

Boyer-Moore-Horspool Rabin Karp

Boyer Moore Rabin Karp

_ﬁ_

o

o

In milliseconds

o

T T
Boyer Moore Rabin Karp Algorithm
Algorithm Algorithm



In milliseconds

Pattern=Dundee (10000 iterations)

Boyer-Moore-Horspool Rabin Karp

Boyer Moore Rabin Karp

— i —e—

In milliseconds

T
Boyer Moore

) T
Algorithm Rabin Karp Algorithm



Bigger text file

]Uﬂld load jute book(string& str) {
: // Read the whole file into str.
load file("jute-book.txt™, str);

1! [/ Extract only the main text of the book, removing the Project Gutenberg
- /f header/footer and indices.
str = str.substr(ex4d7);



In milliseconds

Pattern=the (1000 iterations)

Boyer-Moore-Horspool Rabin Karp

Boyer Moore Rabin Karp

—e— N ——

In milliseconds

Rabin Karp Algorithm

T
Boyer Moore
Algorithm

Algorithm



In milliseconds

Pattern=terms (1000 iterations)

Boyer-Moore-Horspool Rabin Karp

Boyer Moore Rabin Karp

o . ——

o

In milliseconds

Rabin Karp Algorithm

T
Boyer Moore
Algorithm

Algorithm



In milliseconds

Pattern=the (10000 iterations)

Boyer-Moore-Horspool Rabin Karp

Boyer Moore Rabin Karp

—o— il —e—

1]

o

a8
Trf

In milliseconds

T
Rabin Karp Algorithm

T
Boyer Moore
Algorithm

Algorithm



In milliseconds

Pattern=terms (10000 iterations)

Boyer-Moore-Horspool Rabin Karp

Boyer Moore Rabin Karp

—e— ] ——

O

o

o

In milliseconds

T
Rabin Karp Algorithm

T
Boyer Moore
Algorithm

Algorithm



A

= main

4 W, find_boyer mo...
[> operator new

[System Call] nt...

4, find_rabin_karp

[» newHash

Profiling — CPU usage

Searching the

100140 (96.95%)
54841 (53.10%)

1885 (1.83%)

6 (0.01%)

45276 (43.84%)

34017 (32.93%)

2 (0.00%)
52950 (51.26%)
30 (0.03%)

6 (0.01%)

9201 (8.91%)
17582 (17.02%)

strings.exe
strings.exe
strings.exe
ntoskrnl.exe
strings.exe

strings.exe

Metworking | File...
Metworking | Kernel
Metworking | Kernel
Kernel

Metworking | Kernel

4 &= main

4 W, find_rabin_karp

» newHash

[> operator new

[External Call]... =
4, find_boyer_mo...

Searching terms

79520 (99.76%)
46206 (57.97%)
33243 (41.70%)
17 (0.02%)

1 {0.00%)
33291 (41.76%)

0 (0.00%)
12945 (16.24%)
16896 (21.20%)

0 (0.00%)

1 (0.00%)
33267 (41.73%)

strings.exe
strings.exe
strings.exe
strings.exe
veruntime140.dll

strings.exe

Networking | File...
Kemnel
Kernel

Kernel

MNetworking | Kernel



)

Goals

Boyer Moore did get much
faster as pattern and text got
bigger, meeting time complexity
of O(N/M).

Rabin Karp was affected by
length of pattern and started to
perform worse. However, the
Median seemed to almost meet
boyer-moore’s which is strange
if performing much worse.

Conclusion

Box plots

Boyer Moore’s boxplots were
only squashed together in low
iterations. Larger iterations seen
timings more spread out, so this
varied than expected result.

Rabin Karp’s boxplots stayed
somewhat the same even

though iteration size increased.
Max timings always around 9/10
milliseconds.

Time complexity

Boyer-Moore-Horspool: Time
complexity matched as
expected, O(N/M). As |

increased pattern and text size

the algorithm only got better as
seen.

Rabin Karp: As | didn’t
implement rolling hash, time
complexity will be worse.
Instead of O(N), it may be
O(N+M). As in my program |
subtract first letter and add the
next character to get a new
hash.



Any questions

2




